

		Part A Student Book with Skill Builders (SB)	Part B Student Book with Skill Builders (SB)	Part C Student Book with Skill Builders (SB)
2.3	Solve real-world problems involving any of the four operations with rational numbers.	$\begin{aligned} & 93-96,98-102, \\ & 105-116,118, \\ & 119,143-147, \\ & 150,151,153- \\ & 156,159,160, \\ & 170,171,173- \\ & 178 \\ & \text { SB: } 73 \text { to } 83,87 \\ & \text { to } 94,97 \text { to } 101 \text {, } \\ & 119 \text { to } 122,125, \\ & 128,129,134, \\ & 136 \text { to } 138 \end{aligned}$		
	ALGEBRAIC REASONING			
MA.7.A R. 1	Rewrite algebraic expressions in equivalent forms.			
1.1.	Apply properties of operations as strategies to add and subtract linear expressions with rational coefficients. Example: $(7 x-4)-(2-1 / 2 x)$ is equivalent to $15 / 2 x 6$.		$\begin{aligned} & 262-265 \\ & \text { SB: } 209,210 \end{aligned}$	
1.2.	Determine whether two linear expressions are equivalent. Example: Are the expressions 4/3 $(6-x)-3 x$ and $8-$ $5 / 3 x$ equivalent?		SB: 219, 221	
MA.7.A R. 2	Write and solve equations and inequalities in one variable.			
2.1	Write and solve one-step inequalities in one variable within a mathematical context and represent solutions algebraically or graphically.		282-284	$\begin{aligned} & 340-343 \\ & \text { SB: } 265,266 \end{aligned}$
2.2	Write and solve two-step equations in one variable within a mathematical or real-world context, where all terms are rational numbers.		$\begin{aligned} & 260,261,273, \\ & 274 \text { SB: } 216 \text { to } \\ & 218,245 \end{aligned}$	$344-347$ SB: 267 to $271,301$
MA.7.A R. 3	Use percentages and proportional reasoning to solve problems.			
3.1	Apply previous understanding of percentages and ratios to solve multi-step real-world percent problems. Example: 23\% of the junior population are taking an art class this year. What is the ratio of juniors taking an art class to juniors not taking an art class? Example: The ratio of boys to girls in a class is 3:2. What percentage of the students are boys in the class?			

$\left.\left.\begin{array}{|c|l|l|l|l|}\hline & & \begin{array}{c}\text { Part A } \\ \text { Student Book } \\ \text { with }\end{array} & \begin{array}{l}\text { Part B } \\ \text { Student Book } \\ \text { with }\end{array} & \begin{array}{c}\text { Student Book } \\ \text { with }\end{array} \\ \text { Skill Builders } \\ \text { (SB) }\end{array}\right\} \begin{array}{l}\text { Skill Builders } \\ \text { (SB) }\end{array}\right]$

		Part A Student Book with Skill Builders (SB)	Part B Student Book with Skill Builders (SB)	Part C Student Book with Skill Builders (SB)
4.4	Given any representation of a proportional relationship, translate the representation to a written description, table, or equation. Example: The written description, there are 60 minutes in 1 hour, can be represented as the equation $m=60 \mathrm{~h}$. Example: Gina works as a babysitter and earns $\$ 9$ per hour. She would like to earn $\$ 100$ to buy a new tennis racket. Gina wants to know how many hours she needs to work. She can use the equation $h=1 / 9 e$ where e is the amount of money earned, h is the number of hours worked and 1/9 is the constant of proportionality.			$\begin{aligned} & 362-364 \\ & \text { SB: } 284 \text {, } \\ & 285297 \text { to } 300 \end{aligned}$
4.5	Solve real-world problems involving proportional relationships. Example: Gordy is taking a trip from Tallahassee, FL to Portland, Maine, which is about 1,407 miles. On average his SUV gets 23.1 miles per gallon on the highway and his gas tank holds 17.5 gallons. If Gordy starts with a full tank of gas, how many times will he be required to fill the gas tank?			$\begin{aligned} & 362-364 \\ & \text { SB: } 284,285, \\ & 297 \end{aligned}$
	GEOMETRIC REASONING			
MA.7.G R. 1	Solve problems involving two-dimensional figures, including circles.			
1.1.	Apply formulas to find the areas of trapezoids, parallelograms and rhombi.			
1.2	Solve mathematical or real-world problems involving the area of polygons or composite figures by decomposing them into triangles or quadrilaterals.			
1.3	Explore the proportional relationship between circumferences and diameters of circles. Apply a formula for the circumference of a circle to solve mathematical and real-world problems.		209 SB: 177	
1.4	Explore and apply a formula to find the area of a circle to solve mathematical and real-world problems. Example: If a 12 -inch pizza is cut into 6 equal slices and Mikel ate 2 slices, how many square inches of pizza did he eat?			
1.5	Solve mathematical and real-world problems involving dimensions and areas of geometric figures, including scale drawings and scale factors.		$\begin{aligned} & 226,227 \\ & \text { SB: } 183,191 \text {, } \\ & 192,256 \end{aligned}$	
$\begin{gathered} \text { MA.7.G } \\ \text { R. } 2 \end{gathered}$	Solve problems involving three-dimensional figures, including right circular cylinders.			
2.1	Given a mathematical or real-world context, find the surface are of a right circular cylinder using the figure's net.			
2.2	Solve real-world problems involving surface area of right circular cylinders.			

$\left.\left.\begin{array}{|c|l|l|l|l|}\hline & & \begin{array}{c}\text { Part A } \\ \text { Student Book } \\ \text { with }\end{array} & \begin{array}{c}\text { Part B } \\ \text { Student Book } \\ \text { with }\end{array} & \begin{array}{c}\text { Part C } \\ \text { Student Book } \\ \text { with }\end{array} \\ \text { Skill Builders } \\ \text { (SB) }\end{array}\right\} \begin{array}{c}\text { Skill Builders } \\ \text { (SB) }\end{array}\right]$

