

| b) | Compare two decimals to thousandths based on meanings of the digits in each place, using $>,=$, and < symbols to record the results of comparisons. |  | $\begin{aligned} & \text { 49-51 } \\ & \text { SB: } 24-2,24-2 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 4 | Use place value understanding to round decimals to any place. |  | $52,53$ <br> SB: 51-1 to 51-4 |  |
| 5 | Fluently multiply multi-digit whole numbers using a standard algorithm. | 32, 36, 37 <br> SB: 8-2, 8-4 to 87 |  |  |
| 6 | Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. | $39-48$ <br> SB: 9-2 to 9-5, 10 - <br> 1 to 10-6 |  |  |
| 7 | Using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between operations: <br> - add and subtract decimals to hundredths; <br> - multiply and divide decimals to hundredths. Relate the strategy to a written method and explain the reasoning used. |  | $54-62$ <br> SB: 26-2 to 26-4, 271 to 27-6, 28-1 to 287, 45-2, 45-5 |  |
|  |  | IM1 <br> Number, <br> Reasoning, \& Data Student Book/Skill Builder (SB) | IM2 <br> Fraction, Decimal, Percent, \& Probability Student Book/Skill Builder (SB) | IM3 <br> Geometry, Measurement, \& Graphing Student Book/Skill Builder (SB) |
|  | Number and Operations-Fractions |  |  |  |
| 5.NF | Use equivalent fractions as a strategy to add and subtract fractions. |  |  |  |
| 1 | Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. |  | $19-23$ <br> SB: 17-1 to 17-4, 18- $1,18-2$ |  |
| 2 | Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators. <br> Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. |  | $25-27$ <br> SB: 18-3, 18-4, 45- <br> 1, 45-3, 45-10 |  |
| 5.NF | Apply and extend previous understandings of multiplication and division to multiply and divide fractions. |  |  |  |


| 3 | Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$. <br> Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers. |  | $2,3$ <br> SB: 11-3 |  |
| :---: | :---: | :---: | :---: | :---: |
| 4 | Apply and extend previous understandings of multiplication to multiply a fraction by a whole number or a fraction. |  |  |  |
| a) | Interpret the product $a / b \times q$ as a parts of a partition of $q$ into $b$ equal parts; equivalently, as the result of a sequence of operations $a \times q \div$ $b$. |  | $30-32$ <br> SB: 19-2 to 19-5 |  |
| b) | Find the area of a rectangle with fractional side lengths by tiling it with rectangles of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas. |  |  | SB: 38-6 |
| 5 | Interpret multiplication as scaling (resizing). |  |  |  |
| a) | Compare the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. |  | 29 |  |
| b) | Explain why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case). Explain why multiplying a given number by a fraction less than 1 results in a product smaller than the given number. Relate the principle of fraction equivalence $a / a=a / b \times$ $n / n$ to the effect of multiplying $a / b$ by 1 . |  | 28-30 |  |
| 6 | Solve real world problems involving multiplication of fractions and mixed numbers. |  | $28-32$ <br> SB: 19-1 to 19-5 |  |
| 7 | Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. <br> Note: Students able to multiply fractions in general can develop strategies to divide fractions in general, by reasoning about the relationship between multiplication and division. But division of a fraction by a fraction is not a requirement until grade 6 (NY-6.NS.1). |  |  |  |
| a) | Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. |  | 34 |  |
| b) | Interpret division of a whole number by a unit fraction, and compute such quotients. |  | $\begin{aligned} & 34 \\ & \text { SB: 20-2, 20-5 } \end{aligned}$ |  |


| c) | Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions. |  | 34 |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | IM1 <br> Number, Reasoning, \& Data Student Book/Skill Builder (SB) | IM2 <br> Fraction, Decimal, Percent, \& Probability Student Book/Skill Builder (SB) | IM3 <br> Geometry, <br> Measurement, \& Graphing Student Book/Skill Builder (SB) |
|  | Measurement and Data |  |  |  |
| 5.MD | Convert like measurement units within a given measurement system. |  |  |  |
| 1 | Convert among different-sized standard measurement units within a given measurement system when the conversion factor is given. Use these conversions in solving multi-step, real world problems. |  |  | $\begin{aligned} & 31,33-37,39 \\ & \text { SB: } 36-4,36-6,40- \\ & 1,40-2,41-1,41-2, \\ & 42-1,42-2 \end{aligned}$ |
| 5.MD | Represent and interpret data. |  |  |  |
| 2 | Make a line plot to display a data set of measurements in fractions of a unit ( $1 / 2,1 / 4$, $1 / 8)$. Use operations on fractions for this grade to solve problems involving information presented in line plots. |  |  |  |
| 5.MD | Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. |  |  |  |
| 3 | Recognize volume as an attribute of solid figures and understand concepts of volume measurement. |  |  |  |
| a) | Recognize that a cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. |  |  | 52 |
| b) | Recognize that a solid figure which can be packed without gaps or overlaps using $n$ unit cubes is said to have a volume of $n$ cubic units. |  |  | 52 |
| 4 | Measure volumes by counting unit cubes, using cubic cm , cubic in., cubic ft., and improvised units. |  |  | $\begin{aligned} & 52,53 \\ & \text { SB: 39-1, 39-2, 39-5 } \end{aligned}$ |
| 5 | Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. |  |  |  |
| a) | Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. |  |  | $\begin{aligned} & 53 \\ & \text { SB: 39-2, 39-3 } \end{aligned}$ |
| b) | Apply the formulas $\mathrm{V}=\mathrm{I} \times \mathrm{w} \times \mathrm{h}$ and $\mathrm{V}=\mathrm{B} \times \mathrm{h}$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems. |  |  |  |


|  | Recognize volume as additive. Find volumes of <br> solid figures composed of two nonoverlapping <br> right rectangular prisms by adding the volumes <br> of the non-overlapping parts, applying this <br> technique to solve real world problems. |  | SB: 39-7 |
| :---: | :--- | :--- | :--- | :--- |

