Math Teachers Press,Inc.

4850 Park Glen Road, Minneapolis, MN 55416 phone (800) 852-2435 fax (952) 546-7502

Illinois Learning Standards for Mathematics Correlated to Moving with Algebra Grade 8

		$\begin{gathered} \text { Part A } \\ \text { Student Book } \\ \text { Skill Builders (SB) } \\ \hline \end{gathered}$	Part B Student Book Skill Builders (SB)
8.NS	THE NUMBER SYSTEM		
	Know that there are numbers that are not rational, and approximate them by rational numbers.		
1.	Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.	$\begin{aligned} & 80,140-142,165, \\ & 166 \\ & \text { SB: } 61,110,111 \text {, } \\ & 115,116,145 \end{aligned}$	
2.	Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue on to get better approximations.		$\begin{aligned} & 217 \\ & \text { SB: } 185 \end{aligned}$
8.EE	EXPRESSIONS AND EQUATIONS		
	Work with radicals and integer exponents.		
1.	Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{-5}=3^{-3}=$ $1 / 3^{3}=1 / 27$.	$\begin{aligned} & 16-19 \\ & \text { SB: } 13,14 \end{aligned}$	$215,294-297,300$, 301,303 SB: 229, 247, 252
2.	Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.	80 SB: 61	$216,217,304,305$ SB: 184, 185, 233
3.	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3×10^{8} and the population of the world as 7×10^{9}, and determine that the world population is more than 20 times larger.	$\begin{aligned} & 22,23,25 \\ & \text { SB: } 17,18 \end{aligned}$	
4.	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.	SB: 17, 18	

		$\begin{array}{l}\text { Part A } \\ \text { Student Book } \\ \text { Skill Builders (SB) }\end{array}$	$\begin{array}{c}\text { Part B } \\ \text { Student Book } \\ \text { Skill Builders (SB) }\end{array}$
	$\begin{array}{l}\text { Understand the connections between proportional } \\ \text { relationships, lines, and linear equations. }\end{array}$		
5.	$\begin{array}{l}\text { Graph proportional relationships, interpreting the unit rate as the } \\ \text { slope of the graph. Compare two different proportional } \\ \text { relationships represented in different ways. For example, } \\ \text { compare a distance-time graph to a distance-time equation to } \\ \text { determine which of two moving objects has greater speed. }\end{array}$		$\begin{array}{l}314,316,317,320- \\ 327,332,333 \\ \text { SB: 237-239, 241- } \\ 243,249,254\end{array}$
6.	$\begin{array}{l}\text { Use similar triangles to explain why the slope } m \text { is the same } \\ \text { between any two distinct points on a non-vertical line in the } \\ \text { coordinate plane; derive the equation } y=m x ~ f o r ~ a ~ l i n e ~ t h r o u g h ~\end{array}$		
the origin an the equation $y=m x+b$ for a line intercepting the			
vertical axis at b.			

		Part A Student Book	Part B Student Book Skill Builders (SB)
2.	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.		317

		Part A Student Book Skill Builders (SB)	Part B Student Book Skill Builders (SB)
5.	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.		$\begin{aligned} & 196,197,200 \\ & \text { SB: } 164,165,167 \text {, } \\ & 190 \end{aligned}$
	Understand and apply the Pythagorean Theorem		
6.	Explain a proof of the Pythagorean Theorem and its converse.		218
7.	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.		$\begin{aligned} & 218,219 \\ & \text { SB: } 186 \end{aligned}$
8.	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.		
	Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.		
9.	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.		
8.SP	STATISTICS AND PROBABILITY		
	Investigate patterns of association in bivariate data.		
1.	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.		
2.	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.		
3.	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight ach day is associated with an additional 1.5 cm in mature plant height.		

		Part A Student Book Skill Builders (SB)	Part B Student Book Skill Builders (SB)
4.	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two- way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?		

