	Wath Teachers P	ess, Inc				
		速				
			\%804			
		sta	\% ${ }^{3}$			

		MH1 Number, Reasoning, \& Data Student Book/Skill Builder (SB)	MH2 Fractions \& Decimals Student Book/Skill Builder (SB)	MH3 Probability Student Book/Skill Builder (SB)	MH4 Measurement Student Book/Skill Builder (SB)	MH5 Integers, Equations, \& Algebra Student Book/Skill Builder (SB)
	Algebra and Functions					
8.EE.A.	Expressions \& Equations: Work with radicals and integer exponents.					
1	Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3{ }^{2}$ $\times 3^{-5}=3^{-3}=1 /^{33}=1 / 27$.	$\begin{aligned} & 22,25,26 \\ & \text { SB: } 69-1 \end{aligned}$				$\begin{aligned} & 71-73 \\ & \text { SB: } 61-1,61-2 \end{aligned}$
2	Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes (Up to 64). Know that $\sqrt{ } 2$ is irrational.	$\begin{aligned} & \text { 23, } 24 \\ & \text { SB: } 54-1,54-2 \end{aligned}$				$\begin{aligned} & 74 \\ & \text { SB: 61-4 } \end{aligned}$
3	Use numbers expressed in the form of a single-digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3 times 10^{8} and the population of the world as 7 times 10^{9}, and determine that the world population is more than 20 times larger.	$\begin{aligned} & \text { 28-30 } \\ & \text { SB: } 57-1,57-2 \end{aligned}$	SB: 57-1	SB: 57-1		

4	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.						
8.EE.B.	Expressions \& Equations: Understand the connections between proportional relationships, lines, and linear equations.						
5	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.						$\begin{array}{\|l\|} \hline 62-64 \\ \text { SB: } 60-6 \end{array}$
6	Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=$ $m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.						
8.EE.C.	Expressions \& Equations: Analyze and solve linear equations and pairs of simultaneous linear equations.						
7	Solve linear equations in one variable.						

		MH1 Number, Reasoning, \& Data Student Book/Skill Builder (SB)	MH2 Fractions \& Decimals Student Book/Skill Builder (SB)	MH3 Probability Student Book/Skill Builder (SB)	MH4 Measurement Student Book/Skill Builder (SB)	MH5 Integers, Equations, \& Algebra Student Book/Skill Builder (SB)
	Algebra and Functions					
8.F.A.	Functions: Define, evaluate, and compare functions.					
1	Define a function as a rule that assigns to each input exactly one output. Show the graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required for Grade 8.)	$\begin{aligned} & \hline 70 \\ & \text { SB: 60-1 } \end{aligned}$				$\begin{aligned} & \text { 60-64, 67, 68 } \\ & \text { SB: 60-1, 60-3, 60-6 } \end{aligned}$
2	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.					
3	Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.					61, 69 SB: 60-4, 60-5
8.F.B.	Functions: Use functions to model relationships between quantities.					

4	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.					$\begin{aligned} & \text { 62, 63, 77 } \\ & \text { SB: } 60-6 \end{aligned}$
5	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.					68
		MH1 Number, Reasoning, \& Data Student Book/Skill Builder (SB)	MH2 Fractions \& Decimals Student Book/Skill Builder (SB)	MH3 Probability Student Book/Skill Builder (SB)	MH4 Geometry \& Measurement Student Book/Skill Builder (SB)	MH5 Integers, Equations, \& Algebra Student Book/Skill Builder (SB)
	Data, Statistics, and Probability					
8.SP.A.	Statistics \& Probability: Investigate patterns of association in bivariate data.					
1	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	$\begin{aligned} & 75,76 \\ & \text { SB: } 68-4,70-1 \end{aligned}$				

2	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	$\begin{aligned} & 75 \\ & \text { SB: 70-1 } \end{aligned}$				
3	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.					
4	Explain that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two Categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?					
		MH1 Number, Reasoning, \& Data Student Book/Skill Builder (SB)	MH2 Fractions \& Decimals Student Book/Skill Builder (SB)	MH3 Percent \& Probability Student Book/Skill Builder (SB)	MH4 Measurement Student Book/Skill Builder (SB)	MH5 Integers, Equations, \& Algebra Student Book/Skill Builder (SB)
	Geometry					

