续 Math Teachers Press, Inc 					
Florid' ${ }^{\text {a S B.E.S.T. Standards Correlated to }}$ Moving with Math Extensions Grade 8					
		Stuentr fook $\mathrm{Parat}^{\text {a }}$	Skilisuluers	demet ook	Skilusules Part
	Numbersense and opeations				
Ma.s.s50.1					
${ }^{1.1}$	Exened previus understandingof faional			${ }^{78}$	20.4
	Todetine intionan umbers within the rain umber				
	expession invovive saional ummees on n unmer				
1.2					
${ }^{1.3}$					20.3
	Eseend pevious undestanding ofte	2	${ }^{62,6,65}$		
	Laws of Exponents to evaluate numerical expressions and generate equivalent numerical				
	expressions, limited to integer exponents and				
1.4	Expess uumbes ins sientific otation torepesent		${ }^{6 \cdot 1,6 \cdot 7}$		
	and approximate very large or very small quantities.				
	numbers compmenedto seseend ummer.				

1.5	Add, subtract, multiply and divide numbers expressed in scientific notation with procedural fluency.		6-6, 6-8		
1.6	Solve real-world problems involving operations with number expressed in scientific notation.				
1.7	Solve multi-step mathematical and real-world problems involving the order of operations with rational numbers including exponents and radicals.	12	43-1, 43-3		
		Student Book Part A	Skill Builders Part A	Student Book Part B	Skill Builders Part B
	Algebraic Reasoning				
MA.8.AR. 1	Generate equivalent algebraic expressions.				
1.1	Apply the Laws of Exponents to generate equivalent algebraic expressions.		6-6		
1.2	Apply properties of operations to multiply two linear expressions with rational coefficients.				
1.3	Rewrite the sum of two algebraic expressions having a common monomial factor as a common factor multplied by the sum of two algebraic expressions.				
MA.8.AR. 2	Solve multi-step one-variable equations and inequalities.				
2.1	Solve multi-step linear equations in one variable, with rational number coefficients. Include equations with variables on both sides.	56, 57, 60	$\begin{array}{\|l\|} \hline 50-1,50-44 \text { to } 50- \\ 8 \end{array}$		
2.2	Solve two-step linear inequalities in one variable and represent solutions algebraically and graphically.			62,63	51-1, 51-2
2.3	Given a number in the form $x^{2}=p$ and $x^{3}=q$, where p is a whole number and q is an integer, determine the real solutions.	3	6-4		
MA.8.AR. 3	Extend understanding of proportional relationships to two-variable linear equations.				

3.1	Determine if a linear relationship is also a proportional relationship.			64,66	52-2
3.2	Given a table, graph or written description of a linear relationship, determine the slope.			86	58-5
3.3	Given a table, graph or written description of a linear relationship, write an equation in slope-intercept form.			87-89	58-1, 58-2, 58-6
3.4	Given a mathematical or real-world context, graph a two-variable linear equation from a written description, a table or an equation in slope-intercept form.			89	58-1, 58-6
3.5	Given a real-world context, determine and interpret the slope and y-intercept of a two-variable linear equation from a written description, a table, a graph or an equation in slope-intercept form.				58-6 to 58-8
MA.8.AR. 4	Develop an understanding of two-variable systems of equations.				
4.1	Given a system of two linear equations and a specified set of possible solutions, determine which ordered pairs satisfy the system of linear equations.			90-93	59-1, 59-3 to 59-5
4.2	Given a system of two linear equations represented graphically on the same coordinate plane, determine where there is one solution, no solution or infinitely many solutions.				
4.3	Given a mathematical or real-world context, solve systems of two linear equations by graphing.			90	59-1, 59-2
		Student Book Part A	Skill Builders Part A	Student Book Part B	Skill Builders Part B
	Functions				
MA.8.F. 1	Define, evaluate and compare functions.				

1.1	Given a set of ordered pairs, a table, a graph or mapping diagram, determine whether the the relationship is a function. Identify the domain and range of the relation.			82, 84	42-1, 57-1, 57-3
1.2	Given a function defined by a graph or an equation, determine whether the function is a linear function. Given an input-output table, determine whether it could represent a linear function.			84	
1.3	Analyze a real-world written description or graphical representation of a functional relationship between two quantities and identify where the function is increasing, decreasing or constant.				57-2, 57-3
		Student Book Part A	Skill Builders Part A	Student Book Part B	Skill Builders Part B
	Geometric Reasoning				
MA.8.GR. 1	Develop an understanding of the Pythagorean Theorem and angle relationships involving triangles.				
1.1	Apply the Pythagorean Theorem to solve mathematical and real-world problems involving unknown side lengths in right triangles.			79, 80	56-1, 56-3
1.2	Apply the Pythagorean Theorem to solve mathematical and real-world problems involving the distance between two points in a coordinate plane.			81	56-2
1.3	Use the Triangle Inequality Theorem to determine if a triangle can be formed from a given set of sides. Use the converse of the Pythagorean Theorem to determine if a right triangle can be formed from a given set of sides.			79	

1.4	Solve mathematical problem involving the relationship between supplementary, complementary, vertical or adjacent triangles.	34-36	33-1, 33-2		
1.5	Solve problem involving the relationship of interior and exterior angles of a triangle.				
1.6	Develop and use formulas for the sums of the interior angles of regular polygons by decomposing them into triangles.	38	33-4		
MA.8.GR. 2	Understand similarity and congruence using models and transformations.				
2.1	Given a preimage and image generated by a single transformation, identify the transformation that describes the relationship.	51	32-1		
2.2	Given a preimage and image generated by a single dilation, identify the scale factor that describes the relationship.	52			
2.3	Describe and apply the effect of a single transformation on two-dimensional figures using coordinates and the coordinate plane.	51	32-4, 32-5		
2.4	Solve mathematical and real-world problems involving proportional relationships between similar triangles.	49, 50	32-3, 46-2		
		Student Book Part A	Skill Builders Part A	Student Book Part B	Skill Builders Part B
	Data Analysis and Probability				
MA.8.DP. 1	Represent and investigate numerical bivariate data.				
1.1	Given a set of real-world bivariate numerical data, construct a scatter plot or a line graph as appropriate for the context.			94	
1.2	Given a scatter plot within a real-world context, describe patterns of association.			94,95	60-1
1.3	Given a scatter plot with a linear association, informally fit a straight line.			94,96	60-2

MA.8.DP.2	Represent and find probabilities of repeated experiments.				
$\mathbf{2 . 1}$	Determine the sample space for a repeated experiment.	33	$47-1$		$55-77$
$\mathbf{2 . 2}$	Find the theoretical probability of an event related to a repeated experiment.			$55-7,55-3,55-4$	
$\mathbf{2 . 3}$	Solve real-world problems involving probabilities related to single or repeated experiments, including make predictions based on theoretical probability.			56,77	$55-1,55-3,55-4$

