

3	Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, $=$, and $<$.	$\begin{aligned} & 48,63,64 \\ & \text { SB: } 6-2,8-1,8-2 \end{aligned}$		
1.NBT.C.	Number \& Operations in Base Ten: Use place value understanding and properties of operations to add and subtract.			
4	Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and ones, ones and ones; and sometimes it is necessary to compose a ten.		$\begin{aligned} & 49-54,59-62 \\ & \text { SB: } 30-1,30-3,31-1,32- \\ & 1 \text { to } 32-4,32-6,47-1 \text { to } \\ & 47-4,47-6,47-7 \end{aligned}$	
5	Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.	67	52	
6	Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.		$\begin{array}{ll} \hline 56 & \text { SB: } \\ 35-1 & \end{array}$	
		A1 Number Sense Student Book/Skill Builders (SB)	A2 Addition \& Subtraction Student Book/Skill Builders (SB)	A3 Fractions, Geometry \& Measurement Student Book/Skill Builders (SB)
	Algebra and Functions			
1.OA.A.	Operations \& Algebraic Thinking: Represent and solve problems involving addition and subtraction.			

2	Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.			$\begin{array}{ll} 48,49 & \text { SB: } \\ 19-1,19-2,19-4 & \end{array}$
1.MD.B.	Measurement \& Data: Tell and write time			
3	Tell and write time in hours and half-hours using analog and digital clocks.			$23-25$ SB: $18-1,18-2$
1.MD.C.	Measurement \& Data: Represent and interpret data.			
4	Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.		63 SB: $38-4,38-5$	$73-75$ SB: $38-1,38-2$
		A1 Number Sense Student Book/Skill Builders (SB)	A2 Addition \& Subtraction Student Book/Skill Builders (SB)	A3 Measurement Student Book/Skill Builders (SB)
	Geometry			
1.G.A.	Geometry: Reason with shapes and their attributes.			
1	Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus nondefining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes.			$2-6$ SB: $13-1$

$\mathbf{2}$	Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. (Students do not need to learn formal names, such as "right rectangular prisms.")			
$\mathbf{3}$	Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares.			

